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Abstract: The low velocity impact response of hybrid epoxy composites reinforced with plain weave 

fabrics, ply orientation at various angles and filled stratified matrix was analyzed in this study. The 

hybrid epoxy composites were subjected to impact tests at 45J and 90J of energy levels with drop weight 

impact machine. The damaged areas were investigated by visual inspection of impacted and non-

impacted surfaces and by tomographic images. It was found that the replacement of certain carbon inner 

plies with glass ones and the modification of fiber orientation improved the damage resistance of the 

hybrid composites with aramid outer layers subjected to impact loading at 45J of energy level. 
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1. Introduction  
Fiber reinforced thermosetting composites are used increasingly in domains as aeronautics, 

automotive, naval, military, etc. due to their high stiffness, strength, damage tolerance, lightweight and 

low cost as compared to the metallic materials. For example, carbon fiber reinforced polymeric 

composites are often used in aeronautical industry due to their excellent stiffness, mechanical properties 

and lightweight, which are important for flight performance. Also, the most of sport goods materials 

used for Formula 1 racing, aquatic goods, winter equipment, etc. are, also, made of carbon composites 

[1,2]. The glass fiber reinforced epoxy composites are used in naval [3,4] and automotive industry fields 

due to excellent mechanical properties and corrosive resistance. The composites reinforced with aramid 

fibers are used for defense applications due to their high impact resistance [5,6].  

During service life the fiber reinforced polymeric composites can be subjected to low velocity impact 

loadings due to dropping of the tools during maintenance or due to birds, hail and runways debris during 

aircraft take-off or landing [7]. Also, the composites structures can be subjected to high velocity impact 

loadings such as accidents or military applications. Generally, the fiber reinforced laminate composite 

exhibits higher damage strength in the longitudinal and lateral directions than in the transverse one. The 

impact resistance of the fiber reinforced stratified polymeric composites depends on their energy 

absorption capacity, through structural failure by plastic deformations. The typical damage mechanisms 

leading to failure of material structures are matrix cracking, delamination, fiber breakage and pull-out. 

A comparison between unidirectional fiber epoxy composite laminates and fabric reinforced epoxy 

composites, concluded that the delamination occurred in structure of the ones reinforced with 

unidirectional fibers may propagate in all three inter-laminar, intra-laminar and trans-laminar directions 

[8] as compared to the ones reinforced with fabrics, whose delamination propagates in inter-laminar 

direction and through fiber breakage. So, the plain weave fabric reinforced composites exhibit a higher 

low velocity impact performance than that of composites reinforced with unidirectional fibers due to 

their fiber interlacing in two reciprocally perpendicular directions [9] leading to a restriction of 

delamination propagation within a smaller area [10].   

The internal structure damage may occur even in case of low velocity impact with a much reduced 

energy, which usually begins with matrix cracking leading to the adjacent plies separation and 

delamination occurrence. When the applied loading increases the delamination propagates through 

thickness of the composite laminate. The fiber fracture and fabric splitting in the warp and weft yarn 

directions depends on the amount of the impact energy available to break them. The low velocity impact  
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strength of fiber reinforced polymeric composites depends on many factors, as matrix and fiber 

properties, their compatibility, fabric weave type, damage strength and quality of fiber-matrix interface, 

plate thickness [11], shape and diameter of the impactor [12] and initial experimental test parameters 

(velocity and height). In order to improve the impact performance of the laminate composites as 

reinforcements can be used different types of fiber/fabric plies (carbon-glass [13–15], carbon-aramid 

[16], carbon-basalt [17], glass-basalt [18], basalt-aramid [19], etc.) within a single epoxy matrix 

combining the desired properties of each fiber type and increasing the damage tolerance. Damghani et 

al. [20] studied the low velocity impact behavior and residual tensile resistance of the pure carbon ply 

laminate and carbon-glass hybrid laminates. They found that in case of hybrid laminates the glass plies 

reduced the damage spread through materials thickness and led to larger inter-laminar damage areas 

between adjacent carbon and glass plies due to their properties. Chan et al. [21] analyzed the behavior 

of hybrid epoxy composites reinforced with carbon, glass and basalt fibers subjected to low velocity 

impact with energy of 50J. They found that hybrid composites with carbon plies placed as core presented 

the highest impact resistance and energy absorption and the composites reinforced with glass and basalt 

fibers showed almost similar low velocity impact behavior. 

Also, for hybrid composite epoxy materials different types of fillers or metallic wires can be used to 

improve the material responses. In ref. [22] the authors investigated the damage resistance and energy 

absorptions of the non-hybrid and hybrid epoxy composites reinforced with glass fibers and wire mesh 

of stainless steel. They concluded that the addition of stainless steel wire mesh into laminate structures 

as medial ply improved the low velocity impact strength, stiffness and energy absorption capacity. In 

order to improve the impact performance of the composite materials different types of the fillers into 

their polymer matrix can be used as clay [23–25], carbon nanotubes [26–29], carbon nanofibers [30], 

etc. In this case materials impact performance depends on the fillers properties, shape and dimensions, 

compatibility and the properties and quality of matrix-filler interface. In ref. [31] it was investigated the 

influence of the nano-clay and graphene inclusions on the performance of the epoxy laminates reinforced 

with Kevlar fibers subjected to low velocity impact at 32J of energy. The experimental results showed 

that by increasing of volume ratio of nano-clay from 2% to 10% increased, also, the impact resistance 

of the Kevlar-epoxy composites, but the graphene inclusions did not improved their impact response. 

Taraghi et al. [32] studied the low velocity impact performance of the epoxy laminates reinforced with 

Kevlar woven fibers and multi-walled carbon nanotubes. They found that by addition of 0.5 wt. % of 

multi-walled carbon nanotubes into epoxy matrix of the Kevlar laminate led to increasing of absorbed 

energy to 35% and of penetration limit to 40% at ambient temperature. 

In this paper it is presented the impact response of the hybrid epoxy composites reinforced with 

different fabric types, ply orientation at various angles (0°, ± 15°, ± 30°, ± 45° and 90°) and stratified 

filled matrix, which were subjected to low velocity impact loading with 45J and 90J energy levels. 

Actually, these materials were formed in order to obtain multifunctional advanced composite materials 

with improved thermal, electrical and mechanical properties and impact resistance. Thus, into pre-

polymer blend between certain layers filler mixtures of carbon black, aramid powder and barium ferrite 

were added. In these filler mixtures potatoes starch was added the in order to achieve a uniform 

distribution of fillers and to avoid their sedimentation during polymerization process due to its swelling 

into liquid. Bria et al. [33] found that the wt. 10% of potatoes starch did not influence the thermal, 

electrical and mechanical properties of epoxy composites. 

 

2. Materials and methods  
2.1. Materials 

As polymer matrix of the fabric reinforced hybrid laminates with filled stratified matrix and plies 

orientation at various angles, it was selected the bi-component epoxy system EPIPHEN RE 4020 - DE 

4020 (Bostik) with 100:30 ratio of resin and hardener respectively. The epoxy resin of this system is 

made almost of Bisphenol A (BPA) and the hardener was made almost of modified aliphatic amines. 

EPIPHEN system exhibits high adherence and compatibility to all types of fibers and to a large area of 
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organic and inorganic fillers. This epoxy system was used due to pre-polymer mixture important 

characteristics for the formation technique of the hybrid laminates and due to its physical and mechanical 

properties after complete polymerization carried out during 14 days at laboratory temperature of 23°C.  

The plain weave fabrics were used to form hybrid epoxy laminates with ply orientation at various 

angles, as: A - 173g/m2 density aramid fabric with 2200 weaving fibers of 1210dtex and fabric thickness 

of 280µm; C - 160g/m2 density carbon fabric with 3K weaving fibers of 200tex and fabric thickness of 

260µm; G - 163g/m2 density glass fabric with EC9 weaving fibers of 68tex and fabric thickness of 

180µm; M - 270g/m2 density hybrid fabric with three different alternated fiber types (carbon, aramid 

and glass) and copper wire in the weft yarn direction and an aramid fiber alternated by two carbon fibers 

in the warp yarn direction and fabric thickness 330µm. The first three weave types of the fabrics were 

selected due to their similar mechanical properties on both fiber directions [34]. 

In order to obtain stratified epoxy matrix for hybrid laminates it was used as fillers into pre-polymer 

mixture potatoes starch, carbon black, aramid powder and barium ferrite. 

 

2.2. Preparation of hybrid composites 

It was formed by wet lay-up technique five hybrid epoxy laminates reinforced with different fabric 

types, with ply orientation at various angles (0°, ± 15°, ± 30°, ± 45° and 90°) and with filled stratified 

matrix, denoted here by H1, H2, H3, H4 and H5. The microscopic images of the cross sections of hybrid 

laminates are showed in Figure 1, and the plies configuration is presented in Table 1. All hybrid epoxy 

laminates were made of 17 fabric plies, whose medial ply is a lamina of hybrid fabric [35–37]. 

 

  
a b 

  
c d 

 
e 

Figure 1. Microscopic images of the cross sections of hybrid epoxy laminates 

 

In order to increase the fiber adherence, which is important for fiber-matrix interface quality, the used 

plain weave fabrics were treated with three types of solutions as detergent, sodium hydroxide and 

perchloric acid. To provide fiber stability during the lamina cutting and composite forming wet lay-up 

H1 H2 

H3 H4 

H5 
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process, the fabrics were covered with a thin film of epoxy pre-polymer mixed with nitro diluent. 

Regarding the used fabric types the layers of all laminates presents a symmetrical arrangement relative to 

the medial ply and an asymmetrical balanced arrangement considering the layer orientation at various 

angles.  

Two filler mixtures were used to modify the epoxy properties by dispersing them into the pre-polymer 

blend in order to be placed between certain plies, thus obtaining a filled stratified epoxy matrix of hybrid 

laminates. It can be observed in Table 1, that for outer plies 01 to 05 and 13 to17 it was used the first type 

of filling mixture EM1 (potatoes starch, carbon black and aramid powder) and for inner plies 06 to 12 it 

was used the second type of filling mixture EM2 (potatoes starch, carbon black and barium ferrite). In 

order to provide a uniform distribution of carbon black, aramid powder and barium ferrite into epoxy pre-

polymer mixtures and to avoid their sedimentation, potatoes starch was used due to its swelling into liquid 

[33]. All hybrid epoxy laminates were formed at laboratory conditions according to predefined 

configuration of the plies and were thermally cured after complete polymerization. 

 

Table 1. The architecture of fabric reinforced hybrid composites with filled epoxy matrix 

L
a

y
er

 

Filled stratified matrix 
Material 

H1 H2 H3 H4 H5 

01 

EM1 

Potatoes starch + aramid powder + carbon 

black 

(30 % total volume ratio) 

A 30° A 15° A 30° G 30° C 45° 

02 A -30° A 30° A 15° C -30° C -30° 

03 C 45° C -15° C 0° A 0° G 15° 

04 C 0° C -30° G 45° G 45° G 30° 

05 C 45° G 45° G -30° C 30° C -30° 

06 

EM2 

Potatoes starch + carbon 

black + barium ferrite 

(30 % total volume ratio) 

C 0° C 15° C -15° A 15° C 0° 

07 A 15° A 30° A 30° A 45° G 30° 

08 A 30° A 45° A 45° G 30° G 45° 

09 M 90° M 90° M 90° M 90° M 90° 

10 A -30° A 45° A 45° G 30° G 45° 

11 A -15° A -30° A -30° A 45° G -30° 

12 C 0° C -15° C 15° A -15° C 0° 

13 

EM1 

Potatoes starch + aramid powder + carbon 

black 

(30 % total volume ratio) 

C 45° G 45° G 30° C -30° C 30° 

14 C 0° C 30° G 45° G 45° G -30° 

15 C 45° C 15° C 0° A 0° G -15° 

16 A 30° A -30° A -15° C 30° C 30° 

17 A -30° A -15° A -30° G -30° C 45° 

 

2.3 Details of thermal measurements 

The experimental tests of low velocity impact were performed using CEAST Fractovis Plus 9350 

machine, the drop-weight impact system and data acquisition and evaluation software VisualIMPACT. 

Based on the variation of impact height and total weight, it was obtained the impact energy level. Constant 

impact height of 920mm was used and variable crosshead weight arrangement of 5.045 kg and 10.044 kg 

for 45.515J and 90.629 J impact energy levels, respectively. The impactor of drop-weight impact system 

had a hemispherical head with 20 mm diameter. All low velocity impact tests were carried out at constant 

impact velocity of 4.248 m/s, according to EN ISO 6603:2000 standard [38, 39]. As specimens were used 

plates of 190×190mm subjected to impact tests in four points. All low velocity impact tests at 45J and 
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90J energy levels were performed at laboratory conditions. 

 

3. Results and discussions  
The key impact parameters as peak load, maximum contact time, peak and permanent deflections, 

impact and absorbed energies were investigated in order to study the low velocity impact strength of 

some hybrid epoxy composites reinforced with different fabric types, with ply orientation at various 

angles (0°, ±15°, ±30°, 45° and 90°) and filled stratified matrix. In Figure 2 are plotted the load vs. 

deflection and load vs. time curves of the hybrid composite materials subjected to low velocity impact 

at 90J of energy, where it can be observed that all composites were perforated by impactor. 

 

    
                                     a                                                                            b 

Figure 2. Low velocity impact history curves of the hybrid composite materials at 90J of energy:  

a) load vs. deflection curves and b) load vs. time curves 
 

The behavior of the hybrid composite materials subjected to low velocity impact at 45J of energy 

can be investigated based on load vs. deflection, load vs. time and energy vs. time curves plotted in 

Figure 3. The load vs. deflection curves (Figure 3a) show the impactor rebounding case from the surface 

of all hybrid composite plates at the end of each contact time. It can be observed that the hybrid 

composites with aramid outer plies (H1, H2 and H3) presented a better impact response as compared to 

the hybrid composites with outer plies made of glass fabric (H4) and carbon fabric (H5). The hybrid 

composite materials with aramid fibers outer plies showed almost the same impact behavior. In the case 

of these hybrid composites H1, H2 and H3 the addition and increasing of the glass ply number into the 

composite structure by the replacement of certain inner carbon plies with the glass ones led to the 

improvement of their low velocity impact response. Comparing the hybrid composites with outer aramid 

fabric plies, it can be seen that the highest peak load (9.6 kN) and lowest permanent deflection (0.2 mm) 

were recorded in the case of the hybrid composite material H3 and the highest peak deflection (6.4 mm) 

was exhibited by the hybrid composite material H1 due to its high number of carbon plies.  

It can be noticed that the lowest impact resistance was obtained in case of hybrid composite material 

with outer carbon fibers plies and without inner aramid layers, whose deterioration began in the incipient 

phase by matrix cracking and delamination occurrence. The incipient phase can be identified on the 

incipient load section Fi, which occurred before it was reached the maximum contact load value. The 

load vs. time curves of the investigated hybrid epoxy laminates (Figure 3b) shows that the composites 

with aramid fabric outer plies exhibit higher impact resistance due to higher peak load values as 

compared to those of the composites with glass or carbon fabric outer plies. It can be noticed that these 

curves exhibit similar low velocity impact behavior for all hybrid composite plates with aramid fibers 

outer plies. Also, the load vs. time curves shows the poorest impact response in case of the composites 

with carbon fibers outer plies and without aramid inner layers (H5), the incipient load section Fi can be 

identified as the incipient damage. It can be observed that the impact strength of the hybrid composite 

laminates decreases when the maximum impact contact time increases. So, for hybrid composite plates 

with aramid fabrics outer plies, it was recorded the similar maximum contact time value (8ms). The 
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highest value of maximum impact contact time (11ms) was determined in the case of hybrid composite 

plate with carbon fibers outer layers. 

 

 
                                               a                                                                       b 

 
c 

Figure 3. Low velocity impact history curves of the hybrid composite materials at 45J of energy:  

a) load vs. deflection curves, b) load vs. time curves and c) energy vs. time curves 

 

The energy vs. time of the investigated composite materials are plotted in Figure  3c, and shows a 

better low velocity impact response in the case of the hybrid composites with aramid outer plies as 

compared with the ones with carbon and glass outer plies. It can be remarked that the hybrid epoxy 

composites with aramid outer plies exhibited almost similar impact behavior. It can be seen that the 

lowest absorbed impact energy was found in case of the epoxy hybrid composite made of aramid outer 

plies and the most inner glass layers. The absorbed energy is identified on the constant values portion of 

the energy vs. time curves, which appears after the impact energy achieves the maximum values. 

In Figure 4 are presented the obtained data of absorbed energy for epoxy hybrid composites 

reinforced with different fabric types, fiber orientation at various angles and filled stratified matrix. The 

values of absorbed energy were determined by difference between those of total energy and energy at 

maximum load [9]. It can be remarked that the hybrid epoxy laminates with carbon and glass outer plies 

showed much higher values of absorbed energy as compared to the ones made of aramid outer layers. 

The highest value of absorbed energy (25J) was exhibited by the hybrid epoxy laminate with carbon 

outer plies. A comparison between the composite materials with aramid outer layers, it can be observed 

that the replacement of certain carbon plies with the glass ones and the modification of plies orientation 

led to the variation of absorbed energy values. The lowest value of absorbed energy (13.7J) was 

determined in case of the epoxy composite material with aramid outer plies and the most glass inner 

layers. The hybrid composite material with aramid outer plies and without inner glass layers showed 

absorbed energy value of 14J. It can be observed that the replacement of the fifth and thirteenth carbon 

plies with glass ones and the modification of fiber orientation, as in the case of hybrid composite material 

H2, led to an increase in absorbed energy (15.8J). 
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Figure 4. Average absorbed energy of the fabric reinforced hybrid  

composites with filled epoxy matrix and various fiber orientations 
 

The damaged area of the hybrid epoxy laminates reinforced with different fabric types, fiber 

orientation at various angles and filled stratified matrix subjected to low velocity impact loading at 45J 

of energy level are showed in Figure 5, where top (impacted) and bottom (non-impacted) surfaces are 

presented at the sides and the tomographic images of damaged area at each 5 mm are presented in the 

middle. 

It can be noticed that the hybrid epoxy composites with higher energy absorption capacity suffered 

more severe damage due to the fact that the impact energy is absorbed through various mechanisms of 

failure by the composite materials such as matrix cracking, delamination, fiber breakage and pull out 

[40]. Generally, the damaged area of all investigated hybrid epoxy composites show multiple inter-

laminar delamination due to their various fiber orientations, because the propagation direction and shape 

of the delamination are influenced by fiber directions of two adjacent plies [41,42]. Also, it can be 

observed that the hybrid epoxy composite materials suffered translaminar delamination, back face 

splitting in the both fiber directions of the fabrics and fiber pull out.  

It can be seen by inspection of the images of top and bottom surfaces and tomographic images that 

the hybrid composite materials with glass and carbon outer layers subjected to low velocity impact at 

45J suffered more severe damages in comparison to the ones with aramid outer plies. The hybrid epoxy 

composite with carbon outer plies (H5) shows multiple delaminations due to fiber orientation at various 

angles and plies fracture through plate thickness. A larger delamination with an area of almost 126mm2 

can be observed between adjacent glass and carbon lower plies due to their different levels of rigidity. 

The hybrid epoxy composite with glass outer plies (H4) presents two large delamination zones between 

middle plies and plies fracture in the translaminar direction. Comparing the hybrid epoxy composite 

materials with aramid outer plies, it can be observed that the replacement of the certain carbon inner 

plies with the glass ones led to the improvement of the damage resistance. The first hybrid epoxy 

composite with aramid fibers outer plies and without inner glass layers (H1) suffered multiple 

delaminations due to various fiber orientation and different fabric types used as layers. It can be 

remarked by tomographic images investigation that the plies fracture of this composite begins from 

upper carbon inner plies and propagates through plate thickness till lower outer ply. The hybrid epoxy 

composite materials with certain carbon inner plies replaced with glass lamina and with modified fiber 

orientation (H2 and H3) present delaminations between adjacent plies made of aramid and hybrid fabrics 

and between adjacent plies made of aramid and carbon fabrics. The fracture plies in case of these 

composite materials begins from middle ply and propagates till lower outer layer. Comparing the hybrid 

epoxy composite materials with aramid fibers outer layers and glass inner plies (H2 and H3) by visual 

investigation of images of top and bottom surfaces, it can be observed that the one made of fewer inner 

glass plies (H2) suffered a more severe damage of bottom surface as compared to the one with more 

inner glass plies (H3). 
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Figure 5. Images of damaged area of the fabric reinforced hybrid composites with filled epoxy matrix 

and fiber orientation at various angles: a) H1; b) H2; c) H3; d) H4; e) H5 

 

4. Conclusions  
The behavior of hybrid composites reinforced with different types of fabrics, fiber orientation at 

various angles (0°, ±15°, ±30°, 45° and 90°) and filled stratified epoxy matrix subjected to low velocity 

impact loadings at 45J and 90J of energy levels was investigated in this research. The following 

conclusions of this research can be drawn based on the obtained experimental results data plotted in the 

graphs above and images of damaged areas: 

 -All hybrid epoxy composite materials subjected to low velocity impact at 90J of energy level were 

perforated by the impactor. In case of low velocity impact tests at 45J, it was found that the hybrid 

composites with aramid fibers outer plies showed a better impact response as compared to the ones with 

outer plies made of glass and carbon fabrics. The low velocity impact strength of hybrid composites with 

aramid fabric outer plies was improved by replacing of certain inner carbon plies with the glass ones and 
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by modifying the ply orientation angles. The lowest impact resistance was exhibited by hybrid composite 

material with outer carbon fabric plies and without inner aramid layers. It was found that with the 

increasing of maximum impact contact time, the low velocity impact resistance of the hybrid composite 

laminates decreases.  

 -It was recorded that the epoxy hybrid composite with aramid fabrics outer plies and the most inner 

glass layers exhibited the lowest absorbed impact energy. The replacement of certain inner carbon plies 

with the glass ones, in case of composite materials with aramid outer plies, led to a variation of the 

absorbed energy. The epoxy composite material with aramid fibers outer plies and most glass inner 

layers presented a lower value of absorbed energy as compared to the one without inner glass plies, 

whose absorbed energy value was 14J, but by replacing of the fifth and thirteenth carbon plies with the 

glass ones and modifying of fiber orientation angles it was obtained an increasing of the absorbed energy 

(15.8J). 

 -All investigated hybrid epoxy composites showed multiple delamination zones and trans-laminar 

fractures, back face splitting in the both fiber directions of the fabrics and fiber pull out. Generally, the 

hybrid epoxy laminates with aramid fibers outer plies presented a lower damage degree as compared to 

the ones with glass and carbon fabric outer layers. The replacement of the certain carbon inner plies with 

the glass ones led to the improvement of the damage resistance of the hybrid epoxy composite materials 

with aramid fabric outer plies. 

 

Acknowledgments: This work has been funded by the European Social Fund through the Sectoral 

Operational Programme Human Capital 2014-2020, through the Financial Agreement with the title 

„Burse pentru educaţia antreprenorială în rândul doctoranzilor şi cercetătorilor postdoctorat (Be 

Antreprenor!)” (in Romanian: "Scholarships for entrepreneurial education among doctoral students and 

postdoctoral researchers (Be Entrepreneur!)", Contract no. 51680/09.07.2019 - SMIS code: 124539. This 

work was also supported by the Project "EXPERT", Contract no. 14PFE/17.10.2018. 

 

References 

1.WANG J.L., Application of Composite Materials on Sports Equipments, Applied Mechanics and 

Materials, 155, 2012, 903–906. https://doi.org/10.4028/www.scientific.net/AMM.155-156.903 

2.SUN L.N., DENG Z., The Carbon Fiber Composite Materials Application in Sports Equipment, 

Advanced Materials Research, 341, 2011, 173–176.  

https://doi.org/10.4028/www.scientific.net/AMR.341-342.173  

3.GARCIA-ESPINEL J.D., CASTRO-FRESNO D., PARBOLE GAYO P., BALLESTER-MUÑOZ F., 

Effects of sea water environment on glass fiber reinforced plastic materials used for marine civil 

engineering constructions, Materials & Design, 66, 2015, 46–50.   

https://doi.org/10.1016/j.matdes.2014.10.032  

4.RUBINO F., NISTICÒ A., TUCCI F., CARLONE P., Marine Application of Fiber Reinforced 

Composites: A Review, Journal of Marine Science and Engineering, 8, 2020, 26. 

https://doi.org/10.3390/jmse8010026  

5.WANG L., KANESALINGAM S., NAYAK R., PADHYE R., Recent Trends in Ballistic Protection. 

Textiles and Light, Industrial Science and Technology, 3, 2014, 37. 

https://doi.org/10.14355/tlist.2014.03.007  

6.ZHU J., TIAN Y.Y., Applications of Advanced Composite Materials in Bullet-Proof Fields and their 

Study, Advanced Materials Research, 391–392, 2011, 242–245. 

 https://doi.org/10.4028/www.scientific.net/AMR.391-392.242  

7.KHASHABA U.A., OTHMAN R., Low-velocity impact of woven CFRE composites under different 

temperature levels, International Journal of Impact Engineering, 108, 2017, 191–204. 

https://doi.org/10.1016/j.ijimpeng.2017.04.023  

8.BRUNNER A.J., Fracture mechanics characterization of polymer composites for aerospace 

applications, Polymer Composites in the Aerospace Industry, Elsevier, 2015, 191–230. 

https://revmaterialeplastice.ro/
https://doi.org/10.4028/www.scientific.net/AMM.155-156.903
https://doi.org/10.4028/www.scientific.net/AMR.341-342.173
https://doi.org/10.1016/j.matdes.2014.10.032
https://doi.org/10.3390/jmse8010026
https://doi.org/10.14355/tlist.2014.03.007
https://doi.org/10.4028/www.scientific.net/AMR.391-392.242
https://doi.org/10.1016/j.ijimpeng.2017.04.023


MATERIALE  PLASTICE                                                                                                                                                                
https://revmaterialeplastice.ro 

https://doi.org/10.37358/Mat.Plast.1964 

Mater. Plast., 57 (2), 2020, 179-190                                                     188                                https://doi.org/10.37358/MP.20.2.5364                                                        

    

 

 

 https://doi.org/10.1016/B978-0-85709-523-7.00008-6  

9.HOSUR M.V., ADBULLAH M., JEELANI S., Studies on the low-velocity impact response of woven 

hybrid composites, Composite Structures, 67, 2005, 253–262. 

 https://doi.org/10.1016/j.compstruct.2004.07.024  

10.EVCI C., GÜLGEÇ M., An experimental investigation on the impact response of composite 

materials, International Journal of Impact Engineering, 43, 2012, 40–51.  

https://doi.org/10.1016/j.ijimpeng.2011.11.009  

11.REDDY T.S., MOGULANNA K., REDDY K.G., SUBBA REDDY P.R., MADHU V., Effect of 

thickness on behaviour of E-glass/epoxy composite laminates under low velocity impact, Procedia 

Structural Integrity, 14, 2019, 265–272. https://doi.org/10.1016/j.prostr.2019.05.034  

12.SEVKAT E., LIAW B., DELALE F., Drop-weight impact response of hybrid composites impacted 

by impactor of various geometries, Materials & Design, 52, 2013, 67–77. 

 https://doi.org/10.1016/j.matdes.2013.05.016  

13.ZHANG C., RAO Y., LI W., Low-velocity impact behavior of intralayer hybrid composites based 

on carbon and glass non-crimp fabric, Composite Structures, 234, 2020, 111713. 

 https://doi.org/10.1016/j.compstruct.2019.111713  

14.ROGANI A., NAVARRO P., MARGUET S., FERRERO J-F, LANOUETTE C., Tensile post-impact 

behaviour of thin carbon/epoxy and glass/epoxy hybrid woven laminates – Part I: Experimental study, 

Composite Structures, 230, 2019, 111508. 

https://doi.org/10.1016/j.compstruct.2019.111508  

15.SWOLFS Y., GEBOES Y., GORBATIKH L., PINHO S.T., The importance of translaminar fracture 

toughness for the penetration impact behaviour of woven carbon/glass hybrid composites, Composites 

Part A: Applied Science and Manufacturing, 103, 2017, 1–8.  

https://doi.org/10.1016/j.compositesa.2017.09.009  

16.WAGIH A., SEBAEY T.A., YUDHANTO A., LUBINEAU G., Post-Impact Flexural Behavior of 

Carbon-Aramid/Epoxy Hybrid Composites, Composite Structures, 2020, 112022. 

 https://doi.org/10.1016/j.compstruct.2020.112022  

17.TIRILLÒ J., FERRANTE L., SARASINI F., LAMPANI L., BARBERO E., SÁNCHEZ-SÁEZ S., 

VALENTE T., GAUDENZI P., High velocity impact behaviour of hybrid basalt-carbon/epoxy 

composites, Composite Structures, 168,  2017, 305–312. 

 https://doi.org/10.1016/j.compstruct.2017.02.039  

18.SARASINI F., TIRILLÒ J., VALENTE M., VALENTE T., CIOFFI S., IANNACE S., 

SORRENTINO L., Effect of basalt fiber hybridization on the impact behavior under low impact velocity 

of glass/basalt woven fabric/epoxy resin composites, Composites Part A: Applied Science and 

Manufacturing, 47, 2013, 109–123. https://doi.org/10.1016/j.compositesa.2012.11.021  

19.KHAZAIE M., ESLAMI-FARSANI R., SAEEDI A., Evaluation of repeated high velocity impact on 

polymer-based composites reinforced with basalt and Kevlar fibers, Materials Today Communications, 

17, 2018, 76–81. https://doi.org/10.1016/j.mtcomm.2018.08.016  

20.DAMGHANI M., ERSOY N., PIORKOWSKI M., MURPHY A., Experimental evaluation of 

residual tensile strength of hybrid composite aerospace materials after low velocity impact, Composites 

Part B: Engineering, 179, 2019, 107537. https://doi.org/10.1016/j.compositesb.2019.107537  

21.CHEN D., LUO Q., MENG M., LI Q., SUN G., Low velocity impact behavior of interlayer hybrid 

composite laminates with carbon/glass/basalt fibres, Composites Part B: Engineering, 176, 2019, 

107191. https://doi.org/10.1016/j.compositesb.2019.107191  

22.KARUNAGARAN N., BHARATHIRAJA G., MUNIAPPAN A., YOGANANDAM K., Energy 

absorption and damage behaviour of surface treated glass fibre/stainless steel wire mesh reinforced 

hybrid composites, Materials Today: Proceedings, 2020. https://doi.org/10.1016/j.matpr.2019.11.305  

23.RAFIQ A., MERAH N., BOUKHILI R., AL-QADHI M., Impact resistance of hybrid glass fiber 

reinforced epoxy/nanoclay composite, Polymer Testing, 57, 2017, 1–11. 

 https://doi.org/10.1016/j.polymertesting.2016.11.005  

https://revmaterialeplastice.ro/
https://doi.org/10.1016/B978-0-85709-523-7.00008-6
https://doi.org/10.1016/j.compstruct.2004.07.024
https://doi.org/10.1016/j.ijimpeng.2011.11.009
https://doi.org/10.1016/j.prostr.2019.05.034
https://doi.org/10.1016/j.matdes.2013.05.016
https://doi.org/10.1016/j.compstruct.2019.111713
https://doi.org/10.1016/j.compstruct.2019.111508
https://doi.org/10.1016/j.compositesa.2017.09.009
https://doi.org/10.1016/j.compstruct.2020.112022
https://doi.org/10.1016/j.compstruct.2017.02.039
https://doi.org/10.1016/j.compositesa.2012.11.021
https://doi.org/10.1016/j.mtcomm.2018.08.016
https://doi.org/10.1016/j.compositesb.2019.107537
https://doi.org/10.1016/j.compositesb.2019.107191
https://doi.org/10.1016/j.matpr.2019.11.305
https://doi.org/10.1016/j.polymertesting.2016.11.005


MATERIALE  PLASTICE                                                                                                                                                                
https://revmaterialeplastice.ro 

https://doi.org/10.37358/Mat.Plast.1964 

Mater. Plast., 57 (2), 2020, 179-190                                                     189                                https://doi.org/10.37358/MP.20.2.5364                                                        

    

 

 

24.MURUGAN P., NARESH K., SHANKAR K., VELMURUGAN R., BALAGANESAN G., High 

velocity impact damage investigation of carbon/epoxy/clay nanocomposites using 3D Computed 

Tomography, Materials Today: Proceedings, 5, 2018, 16946–55. 

 https://doi.org/10.1016/j.matpr.2018.04.098  

25.REIS P.N.B., FERREIRA J.A.M., SANTOS P., RICHARDSON M.O.W., SANTOS J.B., Impact 

response of Kevlar composites with filled epoxy matrix, Composite Structures, 94, 2012, 3520–3528. 

https://doi.org/10.1016/j.compstruct.2012.05.025  

26.XIN W., SARASINI F., TIRILLÒ J., BAVASSO I., SBARDELLA F., LAMPANI L., DE ROSA 

I.M., Impact and post-impact properties of multiscale carbon fiber composites interleaved with carbon 

nanotube sheets, Composites Part B: Engineering, 183, 2020, 107711 

https://doi.org/10.1016/j.compositesb.2019.107711  

27.EL MOUMEN A., TARFAOUI M., LAFDI K., BENYAHIA H., Dynamic properties of carbon 

nanotubes reinforced carbon fibers/epoxy textile composites under low velocity impact, Composites 

Part B: Engineering, 125, 2017, 1–8. https://doi.org/10.1016/j.compositesb.2017.05.065  

28.KARA M., KIRICI M., TATAR A.C., AVCI A., Impact behavior of carbon fiber/epoxy composite 

tubes reinforced with multi-walled carbon nanotubes at cryogenic environment, Composites Part B: 

Engineering, 145, 2018, 145–154. https://doi.org/10.1016/j.compositesb.2018.03.027  

29.SOLIMAN E.M., SHEYKA M.P., TAHA M.R., Low-velocity impact of thin woven carbon fabric 

composites incorporating multi-walled carbon nanotubes, International Journal of Impact Engineering, 

47, 2012, 39–47. https://doi.org/10.1016/j.ijimpeng.2012.03.002  

30.RAHMAN M.M., HOSUR M., HSIAO K-T., WALLACE L., JEELANI S., Low velocity impact 

properties of carbon nanofibers integrated carbon fiber/epoxy hybrid composites manufactured by 

OOA–VBO process, Composite Structures, 120, 2015, 32–40. 

 https://doi.org/10.1016/j.compstruct.2014.09.053. 

31.RAHMAN A.S., MATHUR V., ASMATULU R., Effect of nanoclay and graphene inclusions on the 

low-velocity impact resistance of Kevlar-epoxy laminated composites, Composite Structures, 187, 2018, 

481–488. https://doi.org/10.1016/j.compstruct.2017.12.054  

32.TARAGHI I., FEREIDOON A., TAHERI-BEHROOZ F., Low-velocity impact response of woven 

Kevlar/epoxy laminated composites reinforced with multi-walled carbon nanotubes at ambient and low 

temperatures, Materials & Design, 53, 2014, 152–158. https://doi.org/10.1016/j.matdes.2013.06.051. 

33.BRIA V., CÎRCIUMARU A., BÎRSAN I.G., Some Properties of Starch/Epoxy Composites, Mater. 

Plast., 48, 2011, 189–194. 

34.CAPATINA A., BRIA V., BUNEA M., BIRSAN I.G., Tensile Behaviour of Fabric Reinforced 

Laminates and Plies, Mater. Plast., 56, 2019, 370–377. https://doi.org/10.37358/MP.19.2.5188  

35.BUNEA M., BOSOANCA R., ENI C., CRISTACHE N., STEFANESCU V., The impact 

characteristics of fabric reinforced hybrid composites, Materiale Plastice, 54, 2017, 286–290. 

https://doi.org/10.37358/MP.17.2.4834  

36.BUNEA M., CÎRCIUMARU A., BUCIUMEANU M., BÎRSAN I.G., SILVA F.S., Low velocity 

impact response of fabric reinforced hybrid composites with stratified filled epoxy matrix, Composites 

Science and Technology, 169, 2019, 242–248. https://doi.org/10.1016/j.compscitech.2018.11.024  

37.STEFANESCU V., BUNEA M., CIRCIUMARU A., Impact Analysis of Fabric Reinforced Plates, 

Materiale Plastice, 52, 2015, 198–203. 

38.European Standard EN ISO 6603-1:2000. Determination of puncture impact behaviour of rigid 

plastics. Part 1: Non-instrumented impact testing, 2000. 

39.***European Standard EN ISO 6603-2:2000. Determination of puncture impact behaviour of rigid 

plastics. Part 2: Instrumented impact testing, 2000. 

40.DAVID-WEST O.S., ALEXANDER N.V., NASH D.H., BANKS W.M., Energy absorption and 

bending stiffness in CFRP laminates: The effect of 45° plies, Thin-Walled Structures, 46, 2008, 860–

869. https://doi.org/10.1016/j.tws.2008.01.024  

https://revmaterialeplastice.ro/
https://doi.org/10.1016/j.matpr.2018.04.098
https://doi.org/10.1016/j.compstruct.2012.05.025
https://doi.org/10.1016/j.compositesb.2019.107711
https://doi.org/10.1016/j.compositesb.2017.05.065
https://doi.org/10.1016/j.compositesb.2018.03.027
https://doi.org/10.1016/j.ijimpeng.2012.03.002
https://doi.org/10.1016/j.compstruct.2017.12.054
https://doi.org/10.37358/MP.19.2.5188
https://doi.org/10.37358/MP.17.2.4834
https://doi.org/10.1016/j.compscitech.2018.11.024
https://doi.org/10.1016/j.tws.2008.01.024


MATERIALE  PLASTICE                                                                                                                                                                
https://revmaterialeplastice.ro 

https://doi.org/10.37358/Mat.Plast.1964 

Mater. Plast., 57 (2), 2020, 179-190                                                     190                                https://doi.org/10.37358/MP.20.2.5364                                                        

    

 

 

41.LONG S., YAO X., ZHANG X., Delamination prediction in composite laminates under low-velocity 

impact, Composite Structures, 132, 2015, 290–298. https://doi.org/10.1016/j.compstruct.2015.05.037. 

42.HAZZARD M.K., HALLETT S., CURTIS P.T., IANNUCCI L., TRASK R.S., Effect of fibre 

orientation on the low velocity impact response of thin Dyneema® composite laminates, International 

Journal of Impact Engineering, 100, 2017, 35–45. https://doi.org/10.1016/j.ijimpeng.2016.10.007  

 
Manuscript received: 12.05.2020 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://revmaterialeplastice.ro/
https://doi.org/10.1016/j.ijimpeng.2016.10.007

